help@rskworld.in +91 93305 39277
RSK World
  • Home
  • Development
    • Web Development
    • Mobile Apps
    • Software
    • Games
    • Project
  • Technologies
    • Data Science
    • AI Development
    • Cloud Development
    • Blockchain
    • Cyber Security
    • Dev Tools
    • Testing Tools
  • About
  • Contact

Theme Settings

Color Scheme
Display Options
Font Size
100%
Back

MobileNet V2 Image Classification

Complete Documentation & Project Details for Mobile & Edge Devices

Project Description

This project implements MobileNet V2 architecture, a lightweight CNN designed for mobile and embedded vision applications. It uses inverted residual blocks with linear bottlenecks and depthwise separable convolutions to reduce computational cost while maintaining accuracy. Includes configurable width multipliers (α=0.35 to 1.4) for different accuracy-efficiency trade-offs.

MobileNet V2 uses inverted residual blocks with linear bottlenecks to achieve high accuracy with low computational cost. The architecture is optimized for real-time inference on resource-constrained devices. The implementation provides complete PyTorch and TensorFlow/Keras support with comprehensive training, evaluation, TFLite conversion, and deployment tools for mobile and edge devices.

Project Screenshots

1 / 4
MobileNet V2 Image Classification

Core Features

MobileNet V2 Architecture

  • Inverted residual blocks
  • Linear bottlenecks for efficiency
  • Depthwise separable convolutions
  • Optimized for mobile devices
  • Low computational cost, high accuracy

Dual Framework Support

  • Complete PyTorch implementation
  • Full TensorFlow/Keras implementation
  • Transfer learning support
  • Configurable training parameters
  • Width multiplier variants (α=0.35-1.4)

Training & Evaluation

  • Complete training pipeline
  • Validation loop with metrics
  • Model checkpointing
  • Learning rate scheduling
  • Training history tracking

Visualization Tools

  • Architecture visualization
  • Prediction visualization
  • Training curves plotting
  • Model comparison charts
  • Confusion matrix analysis

Mobile Deployment

  • TensorFlow Lite conversion
  • Model quantization support
  • Real-time webcam classification
  • Edge device optimization
  • Production-ready mobile formats

Real-time Inference

  • Single image classification
  • Webcam real-time classification
  • Pre-trained ImageNet support
  • Batch prediction support
  • Low latency inference

Advanced Features

Data Management

  • PyTorch DataLoader support
  • TensorFlow data generators
  • Custom dataset class
  • Data augmentation transforms
  • Dataset splitting utilities

Jupyter Notebooks

  • MobileNet V2 Demo notebook
  • Transfer learning examples
  • Width multiplier comparison
  • Mobile optimization techniques

Benchmarking

  • Performance comparison across models
  • Inference time measurement
  • Memory usage tracking
  • FPS calculation

Utilities

  • Training/validation loops
  • Model saving/loading
  • Parameter counting
  • History plotting
  • Confusion matrix generation

Width Multiplier Variants

Width Multiplier (α) Parameters (M) Model Size (MB) Top-1 Accuracy (ImageNet) Use Case
0.35 ~1.7 ~7 ~60% Ultra-lightweight devices
0.5 ~2.0 ~8 ~64% Basic mobile devices
0.75 ~2.6 ~10 ~69% Mid-range devices
1.0 (Default) ~3.5 ~14 ~72% Standard mobile devices
1.3 ~5.3 ~21 ~74% High-end devices
1.4 ~6.1 ~24 ~75% Premium devices

Technologies Used

Python 3.7+ PyTorch 1.12+ TensorFlow 2.10+ Keras 2.10+ MobileNet V2 Inverted Residuals TFLite Jupyter Notebook Real-time Inference Edge Devices

Installation & Usage

Installation

# Install basic requirements pip install -r requirements.txt # For API server pip install -r requirements_api.txt

Quick Start

import tensorflow as tf from models.mobilenet_v2 import get_mobilenet_v2_tf # Create MobileNet V2 model model = get_mobilenet_v2_tf( input_shape=(224, 224, 3), num_classes=1000, alpha=1.0 # Width multiplier ) # Or use pre-trained ImageNet model model = tf.keras.applications.MobileNetV2(weights='imagenet')

Training

python train.py --data_dir data/train --epochs 50 --batch_size 32 --alpha 1.0

Inference (Single Image)

python inference.py --image path/to/image.jpg # With custom trained model python inference.py --model_path models/mobilenet_v2_trained.h5 --image path/to/image.jpg

Real-time Webcam Classification

python inference.py --webcam

TFLite Conversion for Mobile

from model_utils import convert_to_tflite convert_to_tflite(model, 'models/mobilenet_v2.tflite', quantize=True)

Demo (Pre-trained Model)

# Quick demo without training python demo.py

Project Structure

mobilenet-classification/
├── README.md # Main documentation
├── requirements.txt # Python dependencies
├── config.py # Configuration settings
├── setup.py # Automated setup
├── LICENSE # MIT License
├── PROJECT_SUMMARY.md # Project overview
│
├── Core Implementation
│ ├── models/
│ │ ├── __init__.py
│ │ └── mobilenet_v2.py # MobileNet V2 (TensorFlow & PyTorch)
│ ├── train.py # Training script
│ ├── inference.py # Inference script
│ ├── data_utils.py # Data loading & preprocessing
│ └── model_utils.py # Model save/load/convert utilities
│
├── Setup & Testing
│ ├── setup.py # Automated setup script
│ ├── quick_start.py # Test installation
│ ├── demo.py # Quick demo with pre-trained model
│ └── create_sample_data.py # Generate sample dataset
│
├── Advanced Tools
│ ├── benchmark.py # Performance benchmarking
│ ├── visualize.py # Visualization utilities
│ └── example_usage.py # Code examples
│
└── Documentation
└── mobilenet_v2_classification.ipynb # Jupyter notebook tutorial

Contact Information

Get in Touch

Developer: Molla Samser
Designer & Tester: Rima Khatun

rskworld.in
help@rskworld.in support@rskworld.in
+91 93305 39277

License

This project is for educational purposes only. See LICENSE file for more details.

About RSK World

Founded by Molla Samser, with Designer & Tester Rima Khatun, RSK World is your one-stop destination for free programming resources, source code, and development tools.

Founder: Molla Samser
Designer & Tester: Rima Khatun

Development

  • Game Development
  • Web Development
  • Mobile Development
  • Software Development
  • Development Tools

Legal

  • Terms & Conditions
  • Privacy Policy
  • Disclaimer

Contact Info

Nutanhat, Mongolkote
Purba Burdwan, West Bengal
India, 713147

+91 93305 39277

hello@rskworld.in
support@rskworld.in

© 2025 RSK World. All rights reserved.

Content used for educational purposes only. View Disclaimer