help@rskworld.in +91 93305 39277
RSK World
  • Home
  • Development
    • Web Development
    • Mobile Apps
    • Software
    • Games
    • Project
  • Technologies
    • Data Science
    • AI Development
    • Cloud Development
    • Blockchain
    • Cyber Security
    • Dev Tools
    • Testing Tools
  • About
  • Contact

Theme Settings

Color Scheme
Display Options
Font Size
100%
Back

EfficientNet Image Classification

Complete Documentation & Project Details

Project Description

This project implements EfficientNet architecture with compound scaling for efficient and accurate image classification, balancing depth, width, and resolution. The architecture achieves better accuracy with fewer parameters compared to ResNet and other models. Includes EfficientNet-B0 through B7 variants for different accuracy-efficiency trade-offs.

EfficientNet uses compound scaling to uniformly scale network depth, width, and resolution. This approach achieves better accuracy with fewer parameters compared to traditional scaling methods. The implementation provides complete PyTorch and TensorFlow/Keras support with comprehensive training, evaluation, and deployment tools.

Project Screenshots

1 / 4
EfficientNet Image Classification

Core Features

EfficientNet Architecture

  • Compound scaling methodology
  • MBConv blocks with Squeeze-and-Excitation
  • Mobile Inverted Residual Bottleneck
  • Better accuracy with fewer parameters
  • Balanced depth, width, and resolution

Dual Framework Support

  • Complete PyTorch implementation
  • Full TensorFlow/Keras implementation
  • Transfer learning support
  • Configurable training parameters
  • Model variant support (B0-B7)

Training & Evaluation

  • Complete training pipeline
  • Validation loop with metrics
  • Model checkpointing
  • Learning rate scheduling
  • Training history tracking

Visualization Tools

  • Architecture visualization
  • Prediction visualization
  • Training curves plotting
  • Model comparison charts
  • Confusion matrix analysis

Model Export

  • ONNX export support
  • TorchScript export
  • TensorFlow export support
  • Production-ready formats

API & Deployment

  • Flask REST API server
  • Single image prediction endpoint
  • Batch prediction endpoint
  • Docker containerization
  • Docker Compose setup

Advanced Features

Data Management

  • PyTorch DataLoader support
  • TensorFlow data generators
  • Custom dataset class
  • Data augmentation transforms
  • Dataset splitting utilities

Jupyter Notebooks

  • EfficientNet Demo notebook
  • Transfer learning examples
  • Model comparison analysis
  • Data augmentation techniques

Benchmarking

  • Performance comparison across models
  • Inference time measurement
  • Memory usage tracking
  • FPS calculation

Utilities

  • Training/validation loops
  • Model saving/loading
  • Parameter counting
  • History plotting
  • Confusion matrix generation

Model Variants

Model Width Depth Resolution Parameters (M)
EfficientNet-B0 1.0 1.0 224 ~5.3
EfficientNet-B1 1.0 1.1 240 ~7.8
EfficientNet-B2 1.1 1.2 260 ~9.2
EfficientNet-B3 1.2 1.4 300 ~12
EfficientNet-B4 1.4 1.8 380 ~19
EfficientNet-B5 1.6 2.2 456 ~30
EfficientNet-B6 1.8 2.6 528 ~43
EfficientNet-B7 2.0 3.1 600 ~66

Technologies Used

Python 3.8+ PyTorch 2.0+ TensorFlow 2.13+ Keras 2.13+ EfficientNet Compound Scaling MobileNet Jupyter Notebook Flask Docker

Installation & Usage

Installation

# Install basic requirements
pip install -r requirements.txt

# For API server
pip install -r requirements_api.txt

Quick Start

from efficientnet_pytorch import efficientnet_b0

# Create model
model = efficientnet_b0(num_classes=1000)

# Use for inference
model.eval()
output = model(input_tensor)

Training

python train.py --train-dir data/train --val-dir data/val --model b0 --epochs 100

Inference

python inference.py --image path/to/image.jpg --model-path best_model.pth --model b0 --num-classes 1000

Evaluation

python evaluate.py --test-dir data/test --model-path best_model.pth --model b0 --num-classes 1000

API Server

python api_server.py --model-path best_model.pth --model b0 --num-classes 1000 --port 5000

Docker Deployment

# Build image
docker build -t efficientnet-classification .

# Run container
docker-compose up

Project Structure

efficientnet-classification/
├── README.md # Main documentation
├── requirements.txt # Python dependencies
├── requirements_api.txt # API server dependencies
├── setup.py # Package setup
├── LICENSE # MIT License
├── CONTRIBUTING.md # Contribution guidelines
├── PROJECT_SUMMARY.md # Project overview
├── Dockerfile # Docker configuration
├── docker-compose.yml # Docker Compose config
│
├── Core Implementation
│ ├── efficientnet_pytorch.py # PyTorch implementation
│ ├── efficientnet_tensorflow.py # TensorFlow/Keras implementation
│ ├── data_loader.py # Data loading utilities
│ └── utils.py # Helper functions
│
├── Training & Inference
│ ├── train.py # Training script
│ ├── inference.py # Inference script
│ ├── evaluate.py # Evaluation script
│ ├── benchmark.py # Benchmarking script
│ └── test_model.py # Model testing
│
├── Data & Preprocessing
│ ├── data_preparation.py # Data preparation utilities
│ └── data/ # Data directories
│ ├── raw/ # Raw images
│ ├── processed/ # Processed images
│ └── augmented/ # Augmented images
│
├── Visualization & Analysis
│ └── visualize.py # Visualization tools
│
├── Deployment
│ ├── api_server.py # Flask API server
│ ├── export_model.py # Model export utilities
│ └── scripts/ # Helper scripts
│
├── Notebooks
│ ├── EfficientNet_Demo.ipynb # Main demo
│ ├── Transfer_Learning.ipynb # Transfer learning
│ ├── Model_Comparison.ipynb # Model comparison
│ └── Data_Augmentation.ipynb # Data augmentation
│
└── Examples
├── example_usage.py # Usage examples
└── demo.html # Demo web page

Contact Information

Get in Touch

Developer: Molla Samser
Designer & Tester: Rima Khatun

rskworld.in
help@rskworld.in support@rskworld.in
+91 93305 39277

License

This project is for educational purposes only. See LICENSE file for more details.

About RSK World

Founded by Molla Samser, with Designer & Tester Rima Khatun, RSK World is your one-stop destination for free programming resources, source code, and development tools.

Founder: Molla Samser
Designer & Tester: Rima Khatun

Development

  • Game Development
  • Web Development
  • Mobile Development
  • Software Development
  • Development Tools

Legal

  • Terms & Conditions
  • Privacy Policy
  • Disclaimer

Contact Info

Nutanhat, Mongolkote
Purba Burdwan, West Bengal
India, 713147

+91 93305 39277

hello@rskworld.in
support@rskworld.in

© 2025 RSK World. All rights reserved.

Content used for educational purposes only. View Disclaimer